Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Syst Parasitol ; 101(3): 31, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642205

RESUMO

The rock ptarmigan (Lagopus muta) has a Holarctic breeding distribution and is found in arctic and sub-arctic regions. Isolated populations and glacial relicts occur in alpine areas south of the main range, like the Pyrenees in Europe, the Pamir mountains in Central Asia, and the Japanese Alps. In recent decades considerable effort has been made to clarify parasite infections in the rock ptarmigan. Seven Eimeria spp. have been reported parasitizing rock ptarmigan. Two of those species, E. uekii and E. raichoi parasitizing rock ptarmigan (L. m. japonica) in Japan, have been identified genetically. Here we compare partial sequences of nuclear (18S rRNA) and mitochondrial (COI) genes and we detail the morphology of sporulated oocysts of E. uekii and E. raichoi from Japan, E. muta and E. rjupa, from the rock ptarmigan (L. m. islandorum) in Iceland, and two undescribed eimerian morphotypes, Eimeria sp. A, and Eimeria sp. B, from rock ptarmigan (L. m. hyperborea) in Norway (Svalbard in the Norwegian Archipelago). Two morphotypes, ellipsoidal and spheroidal, are recognized for each of the three host subspecies. Our phylogenetic analysis suggests that the ellipsoidal oocyst types, E. uekii, E. muta, and Eimeria sp. A (Svalbard-Norway) are identical and infects rock ptarmigan in Japan, Iceland, and Svalbard-Norway, respectively. Eimeria uekii was first described in Japan in 1981 so that E. muta, described in Iceland in 2007, and Eimeria sp. A in Svalbard-Norway are junior synonyms of E. uekii. Also, phylogenetic analysis shows that the spheroidal oocyst types, E. rjupa and Eimeria sp. B (Svalbard-Norway), are identical, indicating that rock ptarmigan in Iceland and Svalbard-Norway are infected by the same Eimeria species and differ from E. raichoi in Japan.


Assuntos
Eimeria , Galliformes , Animais , Eimeria/genética , Svalbard , Japão , Islândia , Filogenia , Galliformes/parasitologia , Especificidade da Espécie , Noruega
2.
PLoS One ; 19(2): e0296350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394169

RESUMO

Eimeria (E.) maxima parasite infects chickens' midgut disrupting the jejunal and ileal mucosa causing high morbidity and mortality. Heat stress (HS) is a seasonal stressor that impacts biological functions leading to poor performance. This study elucidates how HS, E. maxima infection, and their combination affect the ileum transcriptome. Two-hundred and forty 2-week-old males Ross708 chickens were randomly allocated into four treatment groups: thermoneutral-control (TNc), thermoneutral-infected (TNi), heat-stress control (HSc), and heat stress-infected (HSi), with 6 replicates each of 10 birds. Infected groups received 200x103 sporulated E. maxima oocysts/bird, and heat-treated groups were raised at 35°C. At 6-day post-treatment, ileums of five randomly selected chickens per group were sampled, RNA was extracted and sequenced. A total of 413, 3377, 1908, and 2304 DEGs were identified when applying the comparisons: TNc vs HSc, TNc vs TNi, HSi vs HSc, and TNi vs HSi, respectively, at cutoff ≥1.2-fold change (FDR: q<0.05). HSc vs TNc showed upregulation of lipid metabolic pathways and degradation/metabolism of multiple amino acids; and downregulation of most immune-related and protein synthesis pathways. TNc vs TNi displayed upregulation of most of immune-associated pathways and eukaryotic mRNA maturation pathways; and downregulation of fatty acid metabolism and multiple amino acid metabolism pathways including tryptophan. Comparing HSi versus HSc and TNi revealed that combining the two stressors restored the expression of some cellular functions, e.g., oxidative phosphorylation and protein synthesis; and downregulate immune response pathways associated with E. maxima infection. During E. maxima infection under HS the calcium signaling pathway was downregulated, including genes responsible for increasing the cytoplasmic calcium concentration; and tryptophan metabolism was upregulated, including genes that contribute to catabolizing tryptophan through serotonin and indole pathways; which might result in reducing the cytoplasmic pool of nutrients and calcium available for the parasite to scavenge and consequently might affect the parasite's reproductive ability.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Masculino , Animais , Eimeria/genética , Galinhas/genética , Transcriptoma , Triptofano/genética , Cálcio , Imunidade , Resposta ao Choque Térmico/genética , Carne
3.
Infect Immun ; 92(2): e0045623, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38179959

RESUMO

Using transgenic Eimeria spp. to deliver exogenous antigens is a viable option for developing multivalent live vaccines. Previous research revealed that the location of antigen expression in recombinant Eimeria dictates the magnitude and type of immune responses. In this study, we constructed genetically modified Eimeria acervulina that expressed VP2 protein, a protective antigen from infectious bursal disease virus (IBDV), on the surface or in the microneme of sporozoites. After vaccination, VP2-specific antibody was readily detected in specific pathogen-free chickens receiving transgenic E. acervulina parasites expressing VP2 in microneme, but animals vaccinated with which expressing VP2 on surface failed to produce detectable antibody after two times immunizations. Moreover, the bursal lesion of microneme-located VP2 transgenic E. acervulina immunized chickens was less severe compared with un-immunized animals after IBDV challenge infection. Therefore, genetically modified E. acervulina that express IBDV-derived VP2 in micronemes are effective in inducing specific antibody responses against VP2, while parasites that have VP2 expression on cell surface are not suitable. Thus, the use of Eimeria parasites as vaccine vectors needs to consider the proper targeting of exogenous immunogens. Our results have implications for the design of other vector vaccines.


Assuntos
Eimeria , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vacinas , Animais , Galinhas , Eimeria/genética , Vírus da Doença Infecciosa da Bursa/metabolismo , Micronema , Doenças das Aves Domésticas/prevenção & controle , Anticorpos Antivirais/metabolismo
4.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 310-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867370

RESUMO

Coccidiosis, caused by apicomplexan Eimeria species, is a protozoan disease that affects various species of wild and domestic animals. However, data available on Eimeria diversity in ruminants in Saudi Arabia is meagre. Therefore, this study was designed to investigate some eimerian parasites infecting sheep (Sawakni and Harrie breeds) using microscopy and molecular methods for the first time in Saudi Arabia. Twenty-four fecal samples were collected from sheep farms. Based on the floatation technique, eimerian oocysts were observed in 8 of the 24 (33.33%) fecal samples. The coccidian-positive samples were subjected to fecal culture in a shallow layer of 2.5% potassium dichromate (K2 Cr2 O7 ). Detected eimerian oocysts were described micromorphometrically as the basis for traditional oocyst identification. Morphologically, the sporulated oocysts were similar to those of sheep eimerian parasies; Eimeria faurei and Eimeria crandallis. PCR products from the two eimerian species detected from Sawakni and Harrie breeds were sequenced and were found to be distinct from each other with mutations at five positions. One of them clustered with E. crandallis with 99.8%-100% identity with sequences available in GenBank. E. crandallis was obtained from two Sawakni sheep and two Harrie sheep. The other sequences grouped with E. faurei with 99.8% identity with the only sequences available in GenBank. E. crandallis was detected from both Sawakni and Harrie breeds whereas E. faurei was detected only from Sawakni sheep. The findings of this study have implications for the importance of morphometric identification with advanced molecular tools to confirm the identities of sheep Eimeria species and to address the taxonomic study of this eimeriid parasite at the species level.


Assuntos
Coccidiose , Eimeria , Parasitos , Doenças dos Ovinos , Animais , Ovinos , Eimeria/genética , Doenças dos Ovinos/parasitologia , Coccidiose/veterinária , Animais Domésticos , Fezes/parasitologia
5.
Poult Sci ; 103(1): 103227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041891

RESUMO

The chicken business faces substantial economic losses due to the risk of parasitic coinfection. Because the current study aimed to investigate enteric parasitic coinfections problems among the suspected examined chicken farms, samples were collected during the field investigation from suspected freshly dead birds, clinically diseased, apparently healthy, and litter samples for further laboratory parasitological, histopathological, and immunological examinations. Variable mortalities with various clinical indicators, such as ruffled feathers, weight loss, diarrhea of various colors, and a decline in egg production, occurred on the farms under investigation. In addition, the treatment protocols of each of the farms that were evaluated were documented and the m-RNA levels of some cytokines and apoptotic genes among the infected poultry have been assessed. The prevalence rate of parasitic coinfection in the current study was found to be 8/120 (6.66%). Parasitological analysis of the samples revealed that they belonged to distinct species of Eimeria, cestodes, and Ascaridia galli. When deposited, A. galli eggs were nonembryonated and ellipsoidal, but cestodes eggs possessed a thin, translucent membrane that was subspherical. Eimeria spp. oocysts in layer chickens were identified as Eimeria acervulina and Eimeria maxima in broiler chickens. Our findings proved that coinfection significantly upregulated the IL-1ß, BAX, and Cas-3 genes. Conversely, the IL-10, BCL-2, and AKT mRNA levels were downregulated, indicating that nematode triggered apoptosis. The existence of parasite coinfection was verified by histological investigation of the various intestinal segments obtained from affected flocks. A. galli and cestodes obstructed the intestinal lumen, causing different histological alternations in the intestinal mucosa. Additionally, the lamina propria revealed different developmental stages of Eimeria spp. It was determined that parasite coinfection poses a significant risk to the poultry industry. It was recommended that stringent sanitary measures management methods, together with appropriate treatment and preventative procedures, be employed in order to resolve such issues.


Assuntos
Coccidiose , Coinfecção , Eimeria , Parasitos , Doenças das Aves Domésticas , Animais , Coccidiose/epidemiologia , Coccidiose/veterinária , Coccidiose/parasitologia , Galinhas/parasitologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Doenças das Aves Domésticas/parasitologia , Óvulo , Eimeria/genética
6.
Rev Bras Parasitol Vet ; 32(4): e011123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055436

RESUMO

The objective of this study was to identify Eimeria spp. in alternative poultry production systems (APPS) in the State of São Paulo, Brazil. Fecal samples (168) and DNA extracted from fecal samples obtained in APPS located in different Municipalities in the State of São Paulo (93) were examined by microscopy or genera-specific PCR (ITS-1 locus). Samples positive for Eimeria spp. were examined using Eimeria lata, Eimeria nagambie, and Eimeria zaria species-specific PCR protocols (ITS-2 locus) and another E. lata-specific PCR (candidate IMP1 genomic locus) followed by molecular cloning (E. lata and E. zaria ITS-2 amplicons) and genetic sequencing. All positive DNA samples were also submitted to genera-specific nested PCR (18S rRNA gene) followed by next-generation sequencing to identify Eimeria spp. Eimeria nagambie, E. zaria, and Eimeria sp. were identified by ITS2-targeted species-specific PCRs and genetic sequencing. Next-generation sequencing identified, in order of prevalence: E. nagambie; Eimeria acervulina; Eimeria mivati; Eimeria praecox; Eimeria brunetti; Eimeria mitis; Eimeria sp.; Eimeria maxima; E. zaria, and Eimeria necatrix/tenella. Our results confirmed, for the first time in Brazil, the identification of E. nagambie, E. zaria, and Eimeria spp. ITS-2 and 18S rRNA gene sequences not yet described in Brazil.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Eimeria/genética , Coccidiose/diagnóstico , Coccidiose/epidemiologia , Coccidiose/veterinária , Galinhas/parasitologia , Brasil , Aves Domésticas/genética , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/parasitologia , Nigéria , DNA de Protozoário/genética
7.
Vet Res ; 54(1): 119, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093398

RESUMO

Clinical avian coccidiosis is typically caused by coinfection with several Eimeria species. Recombinant protein and DNA vaccines have shown promise in controlling coccidiosis. On this basis, DNA vaccines that encode multiple epitopes from different Eimeria species may provide broad protection against coinfections. In this study, we designed a fusion gene fragment, 14EGT, that contained concentrated T-cell epitopes from four common antigens of Eimeria species (14-3-3, elongation factor 2, glyceraldehyde-3-phosphate dehydrogenase, and transhydrogenase). The multiepitope DNA vaccine pVAX1-14EGT and recombinant protein vaccine pET-32a-14EGT (r14EGT) were then created based on the 14EGT fragment. Subsequently, cellular and humoral immune responses were measured in vaccinated chickens. Vaccination-challenge trials were also conducted, where the birds were vaccinated with the 14EGT preparations and later exposed to single or multiple Eimeria species to evaluate the protective efficacy of the vaccines. According to the results, vaccination with 14EGT preparations effectively increased the proportions of CD4+ and CD8+ T cells and the levels of Th1 and Th2 hallmark cytokines. The levels of serum IgG antibodies were also significantly increased. Animal vaccination trials revealed alleviated enteric lesions, weight loss, and oocyst output compared to those of the control groups. The preparations were found to be moderately effective against single Eimeria species, with the anticoccidial index (ACI) ranging from 160 to 180. However, after challenge with multiple Eimeria species, the protection provided by the 14EGT preparations was not satisfactory, with ACI values of 142.18 and 146.41. Collectively, the results suggest that a multiepitope vaccine that encodes the T-cell epitopes of common antigens derived from Eimeria parasites could be a potential and effective strategy to control avian coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Vacinas Protozoárias , Vacinas de DNA , Animais , Eimeria/genética , Galinhas , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Antígenos de Protozoários/genética , Coccidiose/prevenção & controle , Coccidiose/veterinária , Proteínas Recombinantes , Eimeria tenella/genética
8.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069374

RESUMO

Eimeria tenella is the most pathogenic intracellular protozoan parasite of the Eimeria species. Eimeria oocyst wall biogenesis appears to play a central role in oocyst transmission. Proteome profiling offers insights into the mechanisms governing the molecular basis of oocyst wall formation and identifies targets for blocking parasite transmission. Tandem mass tags (TMT)-labeled quantitative proteomics was used to analyze the oocyst wall and sporocysts of E. tenella. A combined total of 2865 E. tenella proteins were identified in the oocyst wall and sporocyst fractions; among these, 401 DEPs were identified, of which 211 were upregulated and 190 were downregulated. The 211 up-regulated DEPs were involved in various biological processes, including DNA replication, fatty acid metabolism and biosynthesis, glutathione metabolism, and propanoate metabolism. Among these proteins, several are of interest for their likely role in oocyst wall formation, including two tyrosine-rich gametocyte proteins (EtGAM56, EtSWP1) and two cysteine-rich proteins (EtOWP2, EtOWP6). Concurrently, 96 uncharacterized proteins may also participate in oocyst wall formation. The present study significantly expands our knowledge of the proteome of the oocyst wall of E. tenella, thereby providing a theoretical basis for further understanding of the biosynthesis and resilience of the E. tenella oocyst wall.


Assuntos
Eimeria tenella , Eimeria , Animais , Eimeria/genética , Eimeria tenella/genética , Oocistos , Proteoma/metabolismo , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
9.
Front Cell Infect Microbiol ; 13: 1305727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116134

RESUMO

Introduction: Apicomplexan AP2 family of proteins (ApiAP2) are transcription factors (TFs) that regulate parasite growth and development, but little is known about the ApiAP2 TFs in Eimeria spp. ENH_00027130 sequence is predicted to encode a Eimeria necatrix ApiAP2 protein (EnApiAP2). Methods: The cDNAs encoding full-length and truncated EnApiAP2 protein were cloned and sequenced, respectively. Then, the two cDNAs were cloned into the pET28a(+) expression vector and expressed expressed in Escherichia coli BL21. The mouse polyclonal antibody (pAb) and monoclonal antibody (mAb) against recombinant EnApiAP2 (rEnApiAP2) and EnApiAP2tr (rEnApiAP2tr) were prepared and used to localize the native EnApiAP2 protein in E. necatrix, respectively. Finally, the recombinant pEGFP-C1-ΔNLS-EnApiAP2s (knockout of a nuclear localization sequence, NLS) and pEGFP-C1-EnApiAP2 plasmid were constructed and transfected into DF-1 cells, respectively, to further observe subcellular localization of EnApiAP2 protein. Results: The EnApiAP2 gene had a size of 5019 bp and encoded 1672 amino acids, containing a conserved AP2 domain with a secondary structure consisting of an α-helix and three antiparallel ß-strands. The rEnApiAP2 and rEnApiAP2tr were predominantly expressed in the form of inclusion bodies, and could be recognized by the 6×His tag mAb and the serum of convalescent chickens after infection with E. necatrix, respectively. The native EnApiAP2 protein was detected in sporozoites (SZ) and second generation merozoites (MZ-2) extracts, with a size of approximately 210 kDa. A quantitative real-time PCR (qPCR) analysis showed that the transcription level of EnApiAP2 was significantly higher in SZ than in MZ-2, third generation merozoites (MZ-3) and gametocytes (P<0.01). EnApiAP2 protein was localized in the nuclei of SZ, MZ-2 and MZ-3 of E. necatrix. The protein of EnApiAP2 was localized in the nucleus of the DF-1 cells, whereas the ΔNLS-EnApiAP2 was expressed in the cytoplasm, which further confirmed that EnApiAP2 is nucleoprotein. Discussion: EnApiAP2 protein encoded by ENH_00027130 sequence was localized in the nucleus of E. necatrix parasites, and relied on the NLS for migration to DF-1 cell nucleus. The function of EnApiAP2 need further study.


Assuntos
Eimeria , Doenças das Aves Domésticas , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Galinhas/genética , DNA Complementar/genética , Eimeria/genética , Eimeria/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Doenças das Aves Domésticas/parasitologia , Esporozoítos/metabolismo
10.
Sci Rep ; 13(1): 22802, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129566

RESUMO

Eimeria tenella is a major cause of caecal coccidiosis in commercial poultry chickens worldwide. Here, we report chromosomal scale assembly of Eimeria tenella strain APU2, a strain isolated from commercial broiler chickens in the U.S. We obtained 100× sequencing Oxford Nanopore Technology (ONT) and more than 800× Coverage of Illumina Next-Seq. We created the assembly using the hybrid approach implemented in MaSuRCA, achieving a contiguous 51.34 Mb chromosomal-scale scaffolding enabling identification of structural variations. The AUGUSTUS pipeline predicted 8060 genes, and BUSCO deemed the genomes 99% complete; 6278 (78%) genes were annotated with Pfam domains, and 1395 genes were assigned GO-terms. Comparing E. tenella strains (APU2, US isolate and Houghton, UK isolate) derived Houghton strain of E. tenella revealed 62,905 high stringency differences, of which 45,322 are single nucleotide polymorphisms (SNPs) (0.088%). The rate of transitions/transversions among the SNPs are 1.63 ts/tv. The strains possess conserved gene order but have profound sequence heterogeneity in a several chromosomal segments (chr 2, 11 and 15). Genic and intergenic variation in defined gene families was evaluated between the two strains to possibly identify sequences under selection. The average genic nucleotide diversity of 2.8 with average 2 kb gene length (0.145%) at genic level. We examined population structure using available E. tenella sequences in NCBI, revealing that the two E. tenella isolates from the U.S. (E. tenella APU2 and Wisconsin, "ERR296879") share a common maternal inheritance with the E. tenella Houghton. Our chromosomal level assembly promotes insight into Eimeria biology and evolution, hastening drug discovery and vaccine development.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Parasitos , Doenças das Aves Domésticas , Animais , Eimeria tenella/genética , Galinhas/parasitologia , Eimeria/genética , Coccidiose/veterinária , Coccidiose/parasitologia
11.
Parasit Vectors ; 16(1): 312, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661262

RESUMO

BACKGROUND: Coccidiosis caused by Eimeria zuernii (Eimeriidae: Coccidia) represents a significant economic threat to the bovine industry. Understanding the evolutionary and genetic biology of E. zuernii can assist in new interaction developments for the prevention and control of this protozoosis. METHODS: We defined the evolutionary and genetic characteristics of E. zuernii by sequencing the complete mitogenome and analyzing the genetic diversity and population structure of 51 isolates collected from eight yak breeding parks in China. RESULTS: The 6176-bp mitogenome of E. zuernii was linear and encoded typical mitochondrial contents of apicomplexan parasites, including three protein-coding genes [PCGs; cytochrome c oxidase subunits I and III (cox1 and cox3), and cytochrome b (cytb)], seven fragmented small subunit (SSU) and 12 fragmented large subunit (LSU) rRNAs. Genome-wide comparative and evolutionary analyses showed cytb and cox3 to be the most and least conserved Eimeria PCGs, respectively, and placed E. zuernii more closely related to Eimeria mephitidis than other Eimeria species. Furthermore, cox1-based genetic structure defined 24 haplotypes of E. zuernii with high haplotype diversities and low nucleotide diversities across eight geographic populations, supporting a low genetic structure and rapid evolutionary rate as well as a previous expansion event among E. zuernii populations. CONCLUSIONS: To our knowledge, this is the first study presenting the phylogeny, genetic diversity, and population structure of the yak E. zuernii, and such information, together with its mitogenomic data, should contribute to a better understanding of the genetic and evolutionary biological studies of apicomplexan parasites in bovines.


Assuntos
Coccidiose , Eimeria , Genoma Mitocondrial , Bovinos , Animais , Eimeria/genética , Coccidiose/veterinária , Evolução Biológica , Citocromos b , Variação Genética
12.
Trends Parasitol ; 39(12): 1087-1099, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37770352

RESUMO

Chicken coccidiosis, caused by infection with single or multiple Eimeria species, results in significant economic losses to the global poultry industry. Over the past decades, considerable efforts have been made to generate attenuated Eimeria strains, and the use of live attenuated anticoccidial vaccines for disease prevention has achieved tremendous success. In this review, we evaluate the advantages and limitations of the methods of attenuation as well as attenuated Eimeria strains in a historical perspective. Also, we summarize the recent exciting research advances in transient/stable transfection systems and clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing developed for Eimeria parasites, and discuss trends and challenges of developing live attenuated anticoccidial vaccines based on transgenesis and genome editing.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Vacinas Protozoárias , Animais , Galinhas/parasitologia , Vacinas Atenuadas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/parasitologia , Coccidiose/prevenção & controle , Coccidiose/veterinária , Eimeria/genética
13.
Vet Parasitol ; 321: 110002, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567028

RESUMO

Eimeria species are intracellular obligate parasites, among the most common pathogens affecting the intensive poultry industry. Oxidoreductases are members of a class of proteins with redox activity and are widely found in apicomplexan protozoans. However, there have been few reports related to Eimeria species. In this study, total RNA was extracted from the gametocytes of E. necatrix Yangzhou strain to amplify the EnOXIO1 gene using reverse-transcription polymerase chain reaction. After cloning and sequence analysis, the prokaryotic expression vector pET-28a(+)-EnOXIO1 was constructed and transformed into Escherichia coli BL21(DE3), and the recombinant protein rEnOXIO1 was expressed by induction with isopropyl ß-D-1-thiogalactopyranoside. The full length EnOXIO1 gene was 2535 bp encoding 844 amino acids, and the EnOXIO1 protein had a molecular weight of about 100 kDa and was mainly expressed in inclusion bodies. Western blot analysis indicated that the rEnOXIO1 protein had good antigenicity and cross-reactivity and was specifically recognized by a 6 ×HIS labeled monoclonal antibody, mouse anti-recombinant protein polyclonal antibody, and recovery serum from chickens infected with E. necatrix, E. acervulina, and E. tenella sporulated oocysts. The results of laser confocal immunofluorescence localization showed that the EnOXIO1 protein was mainly located on the wall-forming bodies in gametocytes and played an important role in the formation of the oocyst wall. Quantitative PCR analysis revealed that transcript levels of EnOXIO1 were highest in the gametocyte stage. Protein expression levels of EnOXIO1 were higher in the gametocyte stage than in other developmental stages according to western blot analysis. Vaccination of chickens against E. necatrix was achieved with recombinant protein rEnOXIO1, which triggered humoral immunity and antibody production, increased average body weight gain, reduced oocyst output and alleviated lesions after E. necatrix infection. The highest ACI value (172.36) was observed in chickens that received 200 µg rEnOXIO1 compared with other immunization groups.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Animais , Camundongos , Eimeria/genética , Metanol/metabolismo , Coccidiose/parasitologia , Coccidiose/veterinária , Proteínas de Protozoários/genética , Galinhas/parasitologia , Proteínas Recombinantes , Oocistos , Oxirredutases , Glucose/metabolismo , Doenças das Aves Domésticas/parasitologia
14.
Parasit Vectors ; 16(1): 257, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525231

RESUMO

BACKGROUND: A close connection between a protozoan parasite and the balance of the other gut microbes of the host has been demonstrated. The calves may be naturally co-infected with many parasites, and the co-effects of parasites on other intestinal microbes of calves remain unclear. This study aims to preliminarily reveal the relationship between intestinal parasites and other intestinal microbes in calves. METHODS: Fecal samples were collected from four calves with bloody diarrhea, four calves with watery diarrhea, and seven normal calves, and the microbial flora of the samples were analyzed by whole-genome sequencing. Protozoal parasites were detected in the metagenome sequences and identified using polymerase chain reaction (PCR). RESULTS: Cryptosporidium, Eimeria, Giardia, Blastocystis, and Entamoeba were detected by metagenomic analysis, and the identified species were Giardia duodenalis assemblage E, Cryptosporidium bovis, Cryptosporidium ryanae, Eimeria bovis, Eimeria subspherica, Entamoeba bovis, and Blastocystis ST2 and ST10. Metagenomic analysis showed that the intestinal microbes of calves with diarrhea were disordered, especially in calves with bloody diarrhea. Furthermore, different parasites show distinct relationships with the intestinal microecology. Cryptosporidium, Eimeria, and Giardia were negatively correlated with various intestinal bacteria but positively correlated with some fungi. However, Blastocystis and Entamoeba were positively associated with other gut microbes. Twenty-seven biomarkers not only were significantly enriched in bloody diarrhea, watery diarrhea, and normal calves but were also associated with Eimeria, Cryptosporidium, and Giardia. Only Eimeria showed a distinct relationship with seven genera of bacteria, which were significantly enriched in the healthy calves. All 18 genera of fungi were positively correlated with Cryptosporidium, Eimeria, and Giardia, which were also significantly enriched in calves with bloody diarrhea. Functional genes related to parasites and diseases were found mainly in fungi. CONCLUSIONS: This study revealed the relationship between intestinal protozoan parasites and the other calf gut microbiome. Different intestinal protozoan parasites have diametrically opposite effects on other gut microecology, which not only affects bacteria in the gut, but also is significantly related to fungi and archaea.


Assuntos
Blastocystis , Criptosporidiose , Cryptosporidium , Eimeria , Entamoeba , Giardia lamblia , Giardíase , Enteropatias Parasitárias , Parasitos , Animais , Bovinos , Parasitos/genética , Criptosporidiose/parasitologia , Cryptosporidium/genética , Metagenoma , Enteropatias Parasitárias/veterinária , Giardíase/veterinária , Giardíase/parasitologia , Giardia/genética , Giardia lamblia/genética , Blastocystis/genética , Eimeria/genética , Entamoeba/genética , Fezes/parasitologia , Diarreia/veterinária , Diarreia/parasitologia
15.
Vet Parasitol ; 321: 109986, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517173

RESUMO

Coccidiosis caused by Eimeria is one of the most common diseases in domestic rabbits (Oryctolagus cuniculus f. domesticus), with 11 Eimeria species in domestic rabbits recognized internationally. To identify Eimeria species more accurately, a method based on the molecular characteristics of a single oocyst with multiple gene loci was established by combining morphological and molecular biology. The results showed that the total infection rate of Eimeria in domestic rabbits was 44.2 % (152/344). Ten Eimeria species were identified in domestic rabbits based on morphological characteristics, namely Eimeria vejdovskyi (39.5 %, 136/344), E. magna (18.0 %, 62/344), E. perforans (17.4 %, 60/344), E. intestinalis (12.5 %, 43/344), E. media (11.9 %, 41/344), E. coecicola (4.4 %, 15/344), E. irresidua (3.8 %, 13/344), E. exigua (2.6 %, 9/344), E. stiedai (2.3 %, 8/344), and E. piriformis (1.5 %, 5/344). The molecular biological identification of Eimeria in domestic rabbits was conducted through single oocyst selection and nested polymerase chain reaction amplification with multiple gene loci. We obtained the sequences of the 18S rRNA, ITS-1 and COI gene loci of E. magna, E. perforans, E. vejdovskyi, E. media, E. intestinalis, and E. coecicola. The results showed that the molecular biology and morphological identification results of single oocysts were consistent and could be used for the molecular identification of Eimeria at the single oocyst level. This study provides an efficient tool for identification of Eimeria in domestic rabbits and the population genetic study of Eimeria in domestic rabbits.


Assuntos
Coccidiose , Eimeria , Coelhos , Animais , Eimeria/genética , Oocistos , Coccidiose/veterinária , Coccidiose/epidemiologia
16.
Parasit Vectors ; 16(1): 241, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468981

RESUMO

BACKGROUND: The apicomplexan parasites Eimeria spp. are the causative agents of coccidiosis, a disease with a significant global impact on the poultry industry. The complex life cycle of Eimeria spp. involves exogenous (sporogony) and endogenous (schizogony and gametogony) stages. Unfortunately, the genetic regulation of these highly dynamic processes, particularly for genes involved in specific developmental phases, is not well understood. METHODS: In this study, we used RNA sequencing (RNA-Seq) analysis to identify expressed genes and differentially expressed genes (DEGs) at seven time points representing different developmental stages of Eimeria tenella. We then performed K-means clustering along with co-expression analysis to identify functionally enriched gene clusters. Additionally, we predicted apicomplexan AP2 transcription factors in E. tenella using bioinformatics methods. Finally, we generated overexpression and knockout strains of ETH2_0411800 to observe its impact on E. tenella development. RESULTS: In total, we identified 7329 genes that are expressed during various developmental stages, with 3342 genes exhibiting differential expression during development. Using K-means clustering along with co-expression analysis, we identified clusters functionally enriched for oocyte meiosis, cell cycle, and signaling pathway. Among the 53 predicted ApiAP2 transcription factors, ETH2_0411800 was found to be exclusively expressed during sporogony. The ETH2_0411800 overexpression and knockout strains did not exhibit significant differences in oocyst size or output compared to the parental strain, while the resulting ETH2_0411800 knockout parasite showed a relatively small oocyst output. CONCLUSIONS: The findings of our research suggest that ETH2_0411800 is not essential for the growth and development of E. tenella. Our study provides insights into the gene expression dynamics and is a valuable resource for exploring the roles of transcription factor genes in regulating the development of Eimeria parasites.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Animais , Eimeria tenella/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Eimeria/genética , Regulação da Expressão Gênica , Coccidiose/veterinária , Coccidiose/parasitologia , Galinhas/parasitologia , Doenças das Aves Domésticas/parasitologia
17.
Parasit Vectors ; 16(1): 204, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330545

RESUMO

BACKGROUND: Quantifying infection intensity is a common goal in parasitological studies. We have previously shown that the amount of parasite DNA in faecal samples can be a biologically meaningful measure of infection intensity, even if it does not agree well with complementary counts of transmission stages (oocysts in the case of Coccidia). Parasite DNA can be quantified at relatively high throughput using quantitative polymerase chain reaction (qPCR), but amplification needs a high specificity and does not simultaneously distinguish between parasite species. Counting of amplified sequence variants (ASVs) from high-throughput marker gene sequencing using a relatively universal primer pair has the potential to distinguish between closely related co-infecting taxa and to uncover the community diversity, thus being both more specific and more open-ended. METHODS: We here compare qPCR to the sequencing-based amplification using standard PCR and a microfluidics-based PCR to quantify the unicellular parasite Eimeria in experimentally infected mice. We use multiple amplicons to differentially quantify Eimeria spp. in a natural house mouse population. RESULTS: We show that sequencing-based quantification has high accuracy. Using a combination of phylogenetic analysis and the co-occurrence network, we distinguish three Eimeria species in naturally infected mice based on multiple marker regions and genes. We investigate geographical and host-related effects on Eimeria spp. community composition and find, as expected, prevalence to be largely explained by sampling locality (farm). Controlling for this effect, the novel approach allowed us to find body condition of mice to be negatively associated with Eimeria spp. abundance. CONCLUSIONS: We conclude that amplicon sequencing provides the underused potential for species distinction and simultaneous quantification of parasites in faecal material. The method allowed us to detect a negative effect of Eimeria infection on the body condition of mice in the natural environment.


Assuntos
Coccidiose , Eimeria , Parasitos , Animais , Camundongos , Eimeria/genética , Coccidiose/diagnóstico , Coccidiose/veterinária , Coccidiose/epidemiologia , Roedores , Filogenia
18.
J Microbiol Methods ; 211: 106750, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271377

RESUMO

The objective of this study was to compare the levels of recombinant protein from three Eimeria genes before and after optimization of codons for expression in Escherichia coli. Protein coding sequences from Eimeria maxima (EmaxSO7, EmaxIMP1) and Eimeria acervulina (EAH00033530) were cloned with or without prior codon optimization and expressed as polyHis fusion proteins. All three outcomes: higher, lower, or no change in the yield of amount of recombinant protein were observed suggesting that codon optimization alone for expression in E. coli does not inevitably lead to higher expression levels. Analysis of codon usage for each gene sequence revealed that, similar to other organisms, Eimeria intersperses rare and frequently used codons in protein-coding sequences. However, no relationship was observed between the predicted protein structure and the location of major and minor codons, suggesting that codon selection in this apicomplexan parasite is influenced by factors other than regional secondary protein structure.


Assuntos
Eimeria , Eimeria/genética , Eimeria/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Bases , Códon/genética , Proteínas Recombinantes/genética
19.
J Proteomics ; 283-284: 104939, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244522

RESUMO

Eimeria necatrix is an obligate intracellular parasite that has a complex life cycle and causes significant economic losses to the poultry industry. To better understand the cellular invasion mechanism of E. necatrix and develop new measures against its infection, we conducted isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis to investigate protein abundance across different life cycle stages, including unsporulated oocysts (UO), sporozoites (SZ) and second-generation merozoites (MZ-2). Our analysis identified a total of 3606 proteins, among which 1725, 1724, 2143 and 2386 were annotated by the Gene Ontology (GO), EuKaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and InterPro (IPR) databases, respectively. We also identified 388, 300 and 592 differentially abundant proteins in SZ vs UO, SZ vs MZ-2 and MZ-2 vs UO, respectively. Further analysis revealed that 118 differentially abundant proteins were involved in cellular invasion and could be categorized into eight groups. These findings provide valuable insights into protein abundance across the different life cycle stages of E. necatrix and offer candidate proteins for future studies on cellular invasion and other biological processes. SIGNIFICANCE: Eimeria necatrix is an obligate intracellular parasite results in huge economic losses to the poultry industry. Understanding proteomic variations across the life cycle stages of E. necatrix may offer proteins related to cellular invasion of E. necatrix, and provide resources for the development of new treatment and prevention interventions against E. necatrix infection. The current data provide an overall summary of the protein abundance across the three life cycle stages of E. necatrix. We identified differentially abundant proteins potential related to cellular invasion. The candidate proteins we identified will form the basis of future studies for cellular invasion. This work also will help in the development of novel strategies for coccidiosis control.


Assuntos
Coccidiose , Eimeria , Animais , Eimeria/genética , Eimeria/metabolismo , Proteômica , Oocistos/genética , Estágios do Ciclo de Vida , Aves Domésticas , Galinhas
20.
Parasitol Int ; 96: 102756, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37201630

RESUMO

A new Eimeria Schneider, 1875 species is described from an Australian pelican Pelecanus conspicillatus Temminck, 1824 in Western Australia. Sporulated oocysts (n = 23) subspheroidal, 33-35 × 31-33 (34.1 × 32.0) µm; length/width (L/W) ratio 1.0-1.1 (1.07). Wall bi-layered, 1.2-1.5 (1.4) µm thick, outer layer smooth, c.2/3 of total thickness. Micropyle absent, but 2 or 3 polar granules surrounded by a thin membrane, apparently residual, are present. Sporocysts (n = 23) elongate ellipsoidal or capsule shaped, 19-20 × 5-6 (19.5 × 5.6) µm; L/W ratio 3.4-3.8 (3.51). Stieda body vestigial and barely discernible, 0.5 × 1.0 µm; sub-Stieda and para-Stieda bodies absent; sporocyst residuum present, composed of a few dense spherules dispersed among the sporozoites. Sporozoites with robust anterior and posterior refractile bodies and centrally located nucleus. Molecular analysis was conducted at three loci; the 18S and 28S ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene. At the 18S locus, the new isolate shared 98.6% genetic similarity with Eimeria fulva Farr, 1953 (KP789172), which was identified from a goose in China. At the 28S locus, the new isolate shared the highest similarity of 96.2% with Eimeria hermani Farr, 1953 (MW775031) identified from a whooper-swan (Cygnus cygnus (Linnaeus, 1758)) in China. At the COI gene locus, this new isolate was most closely related to Isospora sp. isolate COI-178 and Eimeria tiliquae [25,26], presented 96.5% and 96.2% genetic similarity, respectively. Based on the morphological and molecular data, this isolate is a new species of coccidian parasite, which is named Eimeria briceae n. sp.


Assuntos
Doenças das Aves , Eimeria , Animais , Austrália Ocidental/epidemiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Filogenia , RNA Ribossômico 18S/genética , Fezes/parasitologia , Austrália/epidemiologia , Aves , Eimeria/genética , Oocistos , Esporozoítos , Patos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...